Submitted to Phil. Trans. R. Soc. A - Issue

A 40-million-year history of atmospheric CO₂

Journal:	Philosophical Transactions A
Manuscript ID:	RSTA-2013-0096
Article Type:	Research
Date Submitted by the Author:	31-Jan-2013
Complete List of Authors:	Zhang, Yi Ge; Yale University, Department of Geology and Geophysics Pagani, Mark; Yale University, Department of Geology and Geophysics Liu, Zhonghui; The University of Hong Kong, Department of Earth Sciences Bohaty, Steven; National Oceanography Centre, University of Southampton, Ocean and Earth Science DeConto, Robert; University of Massachusetts- Amherst, Department of Geosciences
Issue Code: Click here to find the code for your issue.:</a 	DM1011
Subject:	Climatology < EARTH SCIENCES, Geochemistry < EARTH SCIENCES, Oceanography < EARTH SCIENCES
Keywords:	Cenozoic carbon dioxide, alkenone-pCO2 method, carbon isotopes, benthic oxygen isotopes, global temperature, cryosphere

SCHOLARONE[™] Manuscripts

1 2		
3 4 5	1	A 40-million-year history of atmospheric CO ₂
6 7 8	2	Yi Ge Zhang ^{1†} , Mark Pagani ¹ , Zhonghui Liu ² , Steven M. Bohaty ³ , and Robert DeConto ⁴
9	3	¹ Department of Coolegy and Coonhyging Vale University New Haven Connectiont
10	4	Department of Geology and Geophysics, Yale University, New Haven, Connecticut
12	5	² Department of Earth Sciences. The University of Hong Kong, Hong Kong, China
13	0	³ Occar and Earth Science, National Occar agree by Cantra University of Scythormaton
14	/	Southampton SO14 2711 UK
16	8	⁴ Department of Consciences, University of Massachusette, Amberet, Amberet
17	9	Department of Geosciences, University of Massachusetts-Amnerst, Amnerst,
18	10	Massachusetts 01003, USA
20	11	
21	12	
22 23	13	
24	14	Corresponding Author:
25	15	210 Whitney Ave, New Haven, Connecticut 06520-8109
26 27	16	$\underline{\text{yige.zhang}(a)\text{yale.edu}}; +1 203 823 5495$
28	17	
29		
30 31		
32		
33		
34 35		
36		
37		
38 39		
40		
41		
42 43		
44		
45		
46 47		
48		
49		
50 51		
52		
53		
ว4 55		
56		
57 59		
วช 59		
60		

18 Abstract

19	The alkenone- pCO_2 methodology has been used to reconstruct the partial pressure of
20	ancient atmospheric carbon dioxide (pCO_2) for the past 45 million years of Earth's
21	history (middle Eocene to Pleistocene epochs). The current long-term CO ₂ record is a
22	composite of data from multiple ocean localities that express a wide range of
23	oceanographic and algal-growth conditions that potentially bias CO ₂ results. In this study
24	we present a pCO_2 record spanning the past 40 million years from a single marine locality,
25	Ocean Drilling Program Site 925 located in the western equatorial Atlantic Ocean. The
26	trends and absolute values of our new CO ₂ record site are broadly consistent with
27	previously published multi-site alkenone-CO ₂ results. However, new pCO ₂ estimates for
28	the middle Miocene are notably higher than published records, with average pCO_2
29	concentrations in the range of 400-500 ppm. Our results are generally consistent with
30	recent pCO_2 estimates based on boron isotope-pH data and stomatal index records, and
31	suggest that CO ₂ levels were highest during a period of global warmth associated with the
32	Middle Miocene Climatic Optimum (17-14 million years ago, Ma), followed by a decline
33	in CO ₂ during the Middle Miocene Climate Transition (~14 Ma). Several relationships
34	remain contrary to expectations. For example, benthic foraminiferal δ^{18} O records suggest
35	a period of deglaciation and/or high-latitude warming during the latest Oligocene (27-23
36	Ma) that, based on our results, occurred concurrently with a long-term decrease in CO ₂
37	levels. Additionally, a large positive δ^{18} O excursion near the Oligocene/Miocene
38	boundary (the Mi-1 event, ~23 Ma), assumed to represent a period of glacial advance and
39	retreat on Antarctica, is difficult to explain by our CO ₂ record alone given what is known
40	of Antarctic ice sheet history and the strong hysteresis of the East Antarctic Ice Sheet
41	once it has grown to continental dimensions. We also demonstrate that in the Neogene
42	with low CO ₂ levels, algal carbon concentrating mechanisms and spontaneous
43	biocarbonate-CO ₂ conversions are likely to play a more important role in algal carbon
44	fixation, which provides a potential bias to the alkenone- pCO_2 method.

- 2 -

2			
3	45		
5 6	46	Key Words: Cenozoic carbon dioxide; alkenone- <i>p</i> CO ₂ method; carbon isotopes; benth	ic
7 8	47	oxygen isotopes; global temperature; cryosphere	
8 9 10 11 23 14 15 16 17 18 9 20 21 22 32 42 526 27 28 9 30 132 33 435 36 37 839 40 41 42 43 44 56 57 859 60	47 48		- 3 -
		http://mc.manuscriptcentral.com/issue-ptrsa	

1. Introduction

Knowledge of the partial pressure of atmospheric CO_2 (pCO_2), beyond direct measurements of atmospheric- [1] and ice-core gas compositions over the last 800 thousand years [2-4], derive from a range of techniques including stomatal indices of fossil leaves (e.g. [5-9]), the carbon isotopic compositions of paleosol carbonate nodules (e.g. [10-12]), the boron isotopic compositions of shallow-dwelling foraminifera (e.g. [13-17]), and the stable carbon isotope compositions of algal biomarkers, such as alkenones (e.g. [18-24]). Most Cenozoic CO₂ reconstructions indicate substantially higher CO₂ values in the early Eocene with a broad decrease during the middle Eocene into the Neogene. However, a two-fold variation in absolute pCO_2 concentrations persists among the available proxies during key climatic intervals [25].

Following the initial development of alkenone–based CO₂ reconstructions for the Pleistocene and Holocene [26, 27], a revised methodology was applied for long-term CO₂ reconstructions for the middle Eocene to the Pleistocene [18-20, 22, 23, 28]. More than twenty marine localities have been used for Cenozoic reconstructions. However, the published Cenozoic alkenone CO₂ record represents a stacked record from various ocean localities (e.g. [28]). This potentially introduces bias into CO₂ trends and magnitudes because temperature, nutrient conditions, seasonality and thermocline depth can impact algal growth conditions and contribute to variability in reconstructed CO₂ estimates. Thus, temporal CO₂ patterns from composite records could have trends specific to individual sites and not representative of changes in long-term global atmospheric conditions [21].

In this study, we present a continuous alkenone-based CO_2 record from one marine site for the past 40 million years in order to limit variability introduced by composite results. With this new record we attempt to reconcile the discrepancy of CO_2 level reconstructions between alkenone and other proxies, and explore CO_2 forcing in the context of global climate change since the late middle Eocene. Also discussed is a preliminary assessment of the potential bias related to algal carbon concentrating

- 4 -

76	mechanisms (CCMs) and spontaneous bicarbonate-CO2 conversion, when using the
77	alkenone- pCO_2 method to estimate CO_2 levels in the Cenozoic.
78	2. Background
79	2.1 The Alkenone- <i>p</i> CO ₂ method
80	2.1.1 Diffusion versus active carbon uptake models of carbon transport
81	Alkenones occur as a suite of long-chained $(C_{37}-C_{39})$ unsaturated ethyl and methyl
82	ketones produced by a few haptophyte algae in the modern ocean [29, 30]. Today, the
83	predominant sources of alkenones derive from Emiliania huxleyi (originating in the Late
84	Pleistocene; [31]) and Gephyrocapsa oceanica (originating in the Pliocene; [32]).
85	Sedimentary alkenones that pre-date the Pliocene were likely produced by haptophytes
86	related to the family Noelaerhabdaceae and genera Reticulofenestra and Dictyococcites
87	[33-37].

Alkenone-based pCO_2 reconstructions require paired measurements on stable carbon-isotope composition of the di-unsaturated C₃₇ methyl ketone ($\delta^{13}C_{37:2}$) and carbonates. Differences between the $\delta^{13}C$ of algal carbon and carbonate represent the total carbon isotope fractionation (ϵ_p) that occurs during algal growth. ϵ_p derived from $\delta^{13}C_{37:2}$ values ($\epsilon_{p37:2}$) is calculated by the equation:

$$\varepsilon_{p37:2} = \left[\frac{\delta_{CO_{2}(aq)} + 1000}{\delta_{org} + 1000} - 1\right] \times 1000$$
 Equation 1

where δ_{org} is the carbon isotopic composition of the algal cell estimated from the δ^{13} C of alkenone ($\delta_{37:2}$). The isotopic difference between δ_{org} and $\delta_{37:2}$ is 4.2‰, following the work of [26, 27, 38]:

97
$$\delta_{\text{org}} = \left[(\delta_{37:2} + 1000) \times \left(\left(\frac{4.2}{1000} \right) + 1 \right) \right] - 1000$$
 Equation 2

 $\delta_{CO_{2(aq)}}$ is the $\delta^{13}C$ value of dissolved $CO_{2(aq)}$ approximated from the $\delta^{13}C$ values of shallow-dwelling foraminifera assuming isotopic and chemical equilibria among all

- 5 -

Equation 3

inorganic carbon species, atmospheric CO_2 , and foraminifera calcite tests (e.g. [26]). The alkenone- CO_2 method is based on the assumption that the transport of inorganic carbon (dissolved CO_2) across the cell membrane to the site of carbon fixation within the algal cell predominantly occurs by diffusion. For diffusion transport, the total stable carbon isotope fractionation that occurs during marine photosynthesis is described by the equation [39, 40]:

ε_p

$$= \varepsilon_{t} + (\varepsilon_{f} - \varepsilon_{t}) \left(\frac{C_{i}}{C_{e}}\right)$$

where C_e represents the ambient concentration of $CO_{2(aq)}$ ([$CO_{2(aq)}$]), C_i is the intracellular $[CO_{2(aq)}]$, ε_{f} is the total carbon isotope fractionation that occurs during photosynthesis, and ε_t is the carbon isotope fractionation associated with carbon transport. Most alkenone-based pCO_2 reconstructions have adopted a range of $\varepsilon_{\rm f}$ values from 25 to 28% (e.g. [18-20, 22-24]), consistent with the majority of algal growth experiments [41, 42]. Chemostat incubations for two strains of alkenone-producing haptophyte algae and two diatoms, under continuous light and nitrate-limited conditions show that ε_p linearly varies with $[CO_{2(aq)}]$, specific growth rate (μ), and cell geometry [42-44], consistent with a predominantly diffusion carbon transport model. In contrast, dilute batch cultures of E. huxleyi grown under nutrient-replete conditions and variable irradiance yield lower $\varepsilon_{p37:2}$ values, minor response to $[CO_{2(aq)}]$ changes [45], and an irradiance effect on the magnitude of $\varepsilon_{p37:2}$ [46]. Such results suggest that assumptions of a strictly diffusion carbon uptake model may not be valid under some nutrient and light conditions. For example, low [CO_{2(aq)}] chemostat experiments for diatom *P. tricornutum* resulted in a nonlinear response of ε_p to $\mu/[CO_{2(aq)}]$, indicating that a carbon concentrating mechanism (CCM) was triggered when the supply of $CO_{2(aq)}$ became limiting to growth (in this case, $< \sim 7 \mu$ mol kg⁻¹, [44, 47]). CCMs are known to be available to a broad range of algal species [48-51] However, whether or not ancient alkenone producing algae were characterized by CCMs is presently unknown.

2.1.2 Simplified model of diffusion carbon uptake and paleoclimate reconstructions

- 6 -

127	Various physiological factors have been shown to impact C _i (Equation 3, [52]).
128	However, because C _i is difficult to constrain, Jasper and Hayes (1994) recast Equation 3
129	as [26]:
130	$\varepsilon_{\rm p} = \varepsilon_{\rm f} - \frac{b}{[{\rm CO}_2]}$ Equation 4
131	where the term ' b ' represents a range of physiological variables that encompass the
132	combined effects of growth rate, cell geometry and other potential factors.
133	Surface-water analysis of $\delta^{13}C_{37:2}$ and seawater chemistry show a strong relationship
134	between 'b' in Equation 4 and the concentration of soluble phosphate [21, 53]. Dissolved
135	reactive phosphate ($[PO_4^{3-}]$) is a key macronutrient that often co-varies with other
136	biolimiting trace-metal micronutrients such as iron, zinc and cobalt [53], providing a link
137	between $[PO_4^{3-}]$, growth rate and the value of ε_p .
138	Calibration of 'b' with respect to $[PO_4^{3-}]$ using all available data (see [21] for
139	references) results in the following relationships assuming $\varepsilon_f = 25\%$:
140	$b = (118.52 \times [PO_4^{3-}]) + 84.07$ Equation 5
141	2.1.3 Uncertainties in <i>p</i> CO ₂ calculations
142	If carbon assimilation is primarily determined by diffusion transport, ε_p is well
143	described by Equation 3. However, various other parameters, in addition to $CO_{2(aq)}$, are
144	known to play a role in the expression of ϵ_p . Some of these parameters influence ϵ_p
145	through a direct impact on C _i including growth rate, irradiance, cell membrane
146	permeability, and cell size. CO ₂ estimates are further compromised by uncertainties in
147	phosphate concentrations used to estimate the physiological-dependent term ' b ', as well
148	as the potential of regionally different 'b' versus $[PO_4^{3-}]$ relationships relative to the
149	global calibration. Assumptions regarding the value of enzymatic isotope fractionation
150	(ϵ_f) , as well as knowledge of sea surface temperatures (SSTs) – generally obtained from
151	various geochemical proxies, further contribute to CO ₂ uncertainties. [21]. Finally, other
152	factors, such as CCMs, likely arise when the intracellular concentration of CO_2 becomes

limiting. CCMs can impact the value of ε_p by transporting different carbon species with specific carbon isotopic compositions, and altering C_i relative to diffusive flux. Also, isotope fractionations associated with active transport mechanisms are likely distinct.

156 2.2 Site location

Ocean Drilling Program (ODP) Site 925 (4°12.25'N, 43°29.33'W, 3042 m water depth) is located on Ceara Rise in the western equatorial Atlantic Ocean (Figure 1, [54]). Modern surface waters at this site are characterized by high mean annual SST ($\sim 27.5^{\circ}$ C) and low nutrient levels (surface $[PO_4^{3-}] \sim 0.14 \,\mu mol/L$, [55]). The middle Eocene to Pleistocene sedimentary succession recovered at Site 925 consists of pelagic carbonate oozes and chalks, primarily foraminifer-bearing nannofossil oozes with minor amounts of clay. All samples used in this study were taken from ODP Hole 925A. Previously reported Plio-Pleistocene pCO_2 data are based on Hole 925C and 925D [22].

165Paleogeographic reconstructions indicate that this site has moved northward over the166past 40 Ma, from just south of the equator during the late Eocene, to ~ 4°N today (Figure1671, [56]). Site 925 was right on the equator around 30 Ma. Available mass accumulation168rates of biogenic barium and reactive phosphorous suggest stable productivity and169nutrient conditions from 36.9 to 32.7 Ma [57]. Calcareous nannofossils indicate weak to170moderate tropical upwelling history [54] consistent with a minor air-sea CO2171disequilibrium expressed today, with modern surface waters enriched by ~22 ppm [58].

3. Methods

3.1 Lipid extraction and analysis

Approximately 40 to 100 grams of sediment (dry weight) were used for biomarker
analysis. Samples were freeze-dried and extracted with dichloromethane/methanol (2:1,
v/v) using an Accelerated Solvent Extractor (ASE 300, Dionex) at 120°C and 10.3 MPa.
Total lipid extracts (TLEs) were concentrated under a stream of purified N₂ using a

- 8 -

178	Zymark Turbovap II and then separated into three fractions using silica gel
179	chromatography. TLEs were separated into compound classes using ashed Pasteur
180	pipettes loaded with ~4g deactivated silica gel (70-230 mesh), and sequentially eluted
181	with 2 ml hexane, 4 ml dichloromethane, and 4 ml of methanol to obtain aliphatic,
182	aromatic, and polar fractions, respectively.
183	The dichloromethane fraction containing ketones was subject to basic hydrolysis and
184	silver nitrate column chromatography to purify long-chain alkenones. Relative
185	abundances of di- and tri-unsaturated methyl ketones were analyzed on a Thermo Trace
186	2000 GC equipped with an Rxi-1ms column (60 m \times 0.25 mm \times 0.25 μm), a pressure-
187	and temperature-variable (PTV) injector and a flame ionization device (FID) with He as
188	the carrier gas. The oven was set to 90°C upon sample injection, held for 1 min, ramped
189	up at 20°C/min to 280°C, then 2°C /min to 320°C. Temperature was held constant at
190	320°C for 30 min. The relative abundance of C37:2 and C37:3 alkenones were used to
191	compute $U_{37}^{k'}$, a proxy developed to reconstruct ancient SSTs [59, 60]. Analytical
192	precision, determined through multiple analyses of an in-house alkenone standard,
193	represents an uncertainty of $\pm 0.005 \ U_{37}^{k'}$ units (Supplementary Material).
194	The methanol fraction containing glycerol dialkyl glycerol tetraethers (GDGTs) was
195	further purified by passing through activated alumina dissolved in
196	dichloromethane/methanol (1:1, v/v). The eluting fraction was dried under pure N_2
197	stream, then dissolved in an azeotrope of hexane/isopropanol (99:1, v/v) and filtered
198	through and ashed 0.7 μ m glass microfiber filter. Analyses of GDGTs were conducted
199	following a slightly modified method described by [61]. Compound identification and
200	relative abundance analyses were determined using an Agilent 1200 high performance
201	liquid chromatography/atmospheric pressure chemical ionization - mass spectrometer
202	(HPLC/APCI-MS). Separation of GDGTs was archived on an Alltech Prevail cyano
203	column (150 mm, 2.1 mm I.D., and 3 μ m grain size) kept at 30°C. The following solvent
204	polarity gradient was used, based on A: hexane/isopropanol (99:1, v/v), and B:

- 9 -

hexane/isopropanol (90:10, v/v): 100% solvent A for 5 min, then solvent B was linearly increased from 0% at 5 min, to 7.4% at 40 min, and maintained from 40 to 50 min. After each sample analysis the column was back flushed with 100% solvent B for 14 min, followed by 10 min equilibration with normal phase flow of 100% solvent A. Mass spectrometric identification and quantification were achieved using an Agilent 6130 ion trap mass spectrometer coupled to the HPLC by an APCI interface. Ion scans were set to m/z 1200-1500. Quantification was based on peak intensities in the mass chromatogram of the $[M+H]^+$ ions. Relative abundance of GDGTs was used to calculate TEX₈₆, a proxy employed to estimate past SSTs [62]. Repeated measurements of an in-house laboratory standard showed the analytical precision represented ± 0.01 TEX₈₆ units (Supplementary Material).

3.2 Carbon Isotope Measurements

Carbon isotopic compositions of $C_{37,2}$ alkenones were analyzed on a Thermo Finnigan MAT 253 mass spectrometer interfaced with a Trace GC Combustion III (GC-IRMS) equipped with a PTV injector and a J&W Scientific DB-1 capillary column (60 m \times 0.25 mm \times 0.25 mm), using He as a carrier gas with a flow speed of 2.0 mL min⁻¹. GC temperature was held at 60°C for 1 minute, increased to 320°C at 15°C/min, and held isothermally for 35 minutes. Carbon isotopes are reported relative to the VPDB standard based on an in-house reference gas calibrated to the OzTech standard ($\delta^{13}C =$ -40.61‰). A C₂₀ *n*-alkane standard was injected daily to determine the analytical accuracy of the carbon isotope measurements, yielding an uncertainty of $\pm 0.2\%$. $U_{37}^{k'}$ and $\delta^{13}C_{37:2}$ data reported for the Eocene-Oligocene climate transition [21] and the Pliocene to Pleistocene [22] have been previously published (Supplementary Material).

3.3 Foraminifera Stable Isotope Measurements

Splits of samples were wet-sieved with deionized water at 63 μm. Surface-dwelling
 planktic foraminifera, including *Globigerinoides ruber*, '*Globigerinoides ruber* s.1.', and

- 10 -

Globigerinoides altiaperturus, were picked from the 250-300 µm sieve fraction in the Neogene section, and epifaunnal benthic foraminifera (*Cibicidoides* spp.) were picked from the $>250 \mu m$ sieve fraction throughout the entire Site 925 study section. Carbon stable isotope analysis of the picked foraminiferal samples was performed using a Europa GEO 20-20 mass spectrometer at the University of Southampton. Samples were reacted with phosphoric acid at 70°C using an automatic carbonate preparation system "CAPS" in line with the mass spectrometer. Typically, 5 to 8 benthic specimens from each sample were combined and analyzed together, and 15 to 20 planktic specimens were analyzed together. All values are reported relative to the VPDB scale, with an external analytical precision estimated at 0.08% for δ^{13} C (Supplementary Material).

3.4 Chronology

Age determinations for ODP Hole 925A are based on biostratigraphy planktic foraminifera ([63, 64]) with 75 age control points based on first and last occurrence datums (Supplementary Material) over the a span of 40 million years. All datums are calibrated to the Geomagnetic Polarity Timescale (GPTS) of [65] and the integrated timescale of Berggren et al. (1995) [66].

4. Results

4.1 Temperature

Sea surface temperatures based on $U_{37}^{k\prime}$ and TEX₈₆ indices were reconstructed for the past 40 Ma using the linear calibration of [67] and the reciprocal calibration of [68], respectively (Figure 2A). $U_{37}^{k\prime}$ SST reconstructions indicate relatively constant temperatures of ~28°C since the late Eocene, except for a ~2°C cooling during the Pliocene-Pleistocene interval. However, 28.3°C represents maximum temperatures expressed by the $U_{37}^{k'}$ calibration ($U_{37}^{k'}$ value reaches 1), and therefore warmer temperatures above ~28°C cannot be determined. In contrast, maximum temperatures associated with the TEX₈₆ proxy are unconstrained. Reconstructed TEX₈₆ records exhibit

much larger fluctuations compared to $U_{37}^{k'}$ with temperatures of ~30°C in the late Eocene that fall to ~22°C during the late Pliocene — more than 5°C cooler at the same locality today. However, the TEX₈₆-based temperatures since Pliocene might suffer from additional GDGT inputs, as indicated by high BIT values (mean value is 0.6, Supplementary Material) [69]. In order to estimate CO_2 , we do not favor one SST proxy over the other for the entire 40 million year record from Site 925. Instead, we selected the highest temperature estimates from both $U_{37}^{k'}$ and TEX₈₆ records to synthesize a composite temperature profile. Differences between $U_{37}^{k'}$ and TEX₈₆ records are considered to reflect the uncertainty of SST reconstructions at each sample, which is further utilized in the computation of $\varepsilon_{p37:2}$ and pCO₂. We also realize that different calibrations for $U_{37}^{k'}$ - and TEX₈₆-SST conversion could introduce additional uncertainties, but they are secondary compared to the difference between the two proxies themselves. 4.2 Carbon isotopes and $\varepsilon_{n37:2}$ Planktonic foraminifera are partially to fully recrystallized in the upper Eocene-lower Oligocene interval of Site 925. δ^{13} C measurements on the presumed surface-water dwellers *Turborotalia* spp. show only small differences (0.1-0.5‰) from the benthic *Cibicidoides* spp. within the same sample, suggesting that *Turborotalia* either maintained a thermocline habitat or is affected by diagenetic alteration [21]. However, agreement between *Cibicidoides* δ^{13} C values at Site 925 and an Eocene-Oligocene Southern Ocean compilation of δ^{13} C values from ODP Sites 689, 733, 744 and 748 suggests adequate preservation of δ^{13} C values [21]. Consequently, Pagani et al. (2011) reconstructed surface δ^{13} C by measuring *Cibicidoidis* δ^{13} C values, assuming a constant offset (0.94‰) between

surface- and deep-waters $\delta^{13}C_{DIC}$ [21].

Miocene mixed-layer foraminifera are better preserved than Paleogene specimens. *Globogerinoides altiaperturus* were measured in the early Miocene and *Globogerinoides ruber* s.1. or *G. ruber* s.1. were selected in the mid- to late-Miocene interval. A δ^{13} C

http://mc.manuscriptcentral.com/issue-ptrsa

- 12 -

offset of 0.94‰ with an ascribed uncertainty of $\pm 0.3\%$ [70] was applied to both G. ruber and G. altiaperturus δ^{13} C values to estimate surface-water δ^{13} C_{DIC} (Figure 2B). The planktic foraminifera approach in the Miocene is accompanied by benthic foraminifera *Cibicidoides* δ^{13} C analyses and the applications of assumed surface-deep water isotopic offsets. Results show that the two independent approaches are within 0.20% from each other (Supplementary Material). Carbon isotope compositions on the shallow-dwelling Globogerinoides sacculifer since 5 Ma have been previously reported (Figure 2B, [22]). $\delta^{13}C_{37:2}$ values are more ¹³C-depleted during the Paleogene relative to the Neogene (Figure 2C). Calculation of δ^{13} C of surface seawater aqueous CO₂ is by converting the mixed-layer $\delta^{13}C_{DIC}$ (Figure 2B), using the composite temperature estimates and associated uncertainties from organic geochemical proxies (Section 4.1), assuming equilibrium isotopic fractionations between different carbonate species. Aqueous CO₂ δ^{13} C and δ^{13} C₃₇, are further used to calculate ε_{n37} . Figure 2 shows that variability in $\delta^{13}C_{37:2}$ is predominantly responsible for the

Figure 2 shows that variability in $\delta^{19}C_{37:2}$ is predominantly responsible for the character of $\varepsilon_{p37:2}$ trends. $\varepsilon_{p37:2}$ values exhibit a long-term decreasing trend, with the majority of $\varepsilon_{p37:2}$ varying between 21-18‰ during the late Eocene to early Oligocene, 16-13‰ in the late Oligocene/Miocene, and 13-11‰ during the Pliocene/Pleistocene (Figure 2D).

302 4.3 *p***CO**₂ **Estimates**

We assume a value of 25% for $\varepsilon_{\rm f}$ [41, 42, 44], and a range of [PO₄³⁻] from 0.14 μ M to 0.39 μ M, representing the present-day phosphate concentrations from 0 m to 100 m near Site 925 [55], with 50 m (0.20 μ M) to be the most representative depth for alkenone production. Estimates of pCO_2 were then calculated assuming air – sea equilibrium and proxy temperatures (the composite temperature, see Section 4.1) using Henry's law (Figure 2E). The uncertainty of pCO_2 is constrained by the variability of temperature and phosphate estimates. The maximum pCO_2 is calculated by using the upper limit of the ε_{p_1} highest phosphate level, and highest temperature estimates; whereas the mimimum of

2
3
4
5
6
7
0
0
9
10
11
12
13
1/
14
10
16
17
18
19
20
21
ר ב בי
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
26
30
37
38
39
40
41
10
-72 10
43
44
45
46
47
48
<u>4</u> 0
43 50
50
51
52
53
54
55
56
50
5/
58
59
60

 pCO_2 is a result of the lower limit of ε_p , lowest phosphate, and lowest temperature (See Sections 4.1 and 4.2 for the determination of uncertainties associated with temperature and ε_p). The resulting uncertainty of pCO_2 estimates averages 38%, much larger than an error propagation model through Monte Carlo procedure (11%) with assumed uncertainty of different parameters used in pCO_2 calculations [20].

316 **5. Discussion**

317 5.1 Comparisons between Site 925 and published Cenozoic *p*CO₂ records

Our new CO₂ results from Site 925 (Figure 3 and 4) broadly agree with previously 318 published composite alkenone- pCO_2 record for the Cenozoic [28]. Nevertheless, 319 systematic differences are apparent with the new record indicating higher CO₂ levels after 320 321 \sim 32 Ma (Figure 3). This discrepancy can be explained, in part, by regional differences in oceanography and algal growth conditions, as expressed by variable ε_p values. For 322 example, the Miocene average $\varepsilon_{\rm p}$ at Site 925 is ~15‰, significantly higher than the mean 323 value of ~10‰ at Deep Sea Drilling Project (DSDP) Site 588 [19, 20]. Further, new SST 324 estimates (e.g. [19, 20]) are used in this study and these new $U_{37}^{k'}$ and TEX₈₆-based 325 temperature records are considerably warmer during the Miocene to early Pliocene, 326 compared to foraminifer δ^{18} O-based estimates (6-8°C, DSDP Site 588, [22]). Warmer 327 SST estimates increase calculated pCO_2 levels [22]. 328 329 Finally, comparison of our new record with recent CO₂ reconstruction efforts, with 330 putatively improved techniques and higher quality data [25] suggests broad agreement with boron isotope-pH [13, 15, 16], stomata- [5-9] and paleosol estimates [10-12], 331

332 although paleosol estimates have inherently larger uncertainties (Figure 4).

333 5.2 Paleoclimate implications

5.2.1 The late middle Eocene to early Oligocene

335	Coupled climate - ice sheet model simulations of the Eocene/Oligocene climate
336	transition indicate that sudden non-linear jumps in ice volume can be triggered by the
337	congruence of favorable orbital cycles when pCO_2 concentrations decrease to 2.5 to 3
338	times preindustrial levels (~750 ppm, Figure 5, [71, 72]). Independent proxy
339	reconstructions of pCO_2 across the Eocene/Oligocene transition, including those
340	estimated by the boron isotope-pH methodology [16] and alkenone-based CO_2 records
341	from Site 925 [21], support these model results and suggest CO_2 began to decrease
342	immediately prior to the Oi-1 event and declined during the climate transition, likely
343	falling below the \sim 750 ppm threshold.
344	Compared to a multi-site approach, oceanography and algal growth conditions might
345	be less variable in a single site. However, the late Eocene – early Oligocene CO ₂ record
346	at Site 925 may still carry features that are specific to this locality. Although no major
347	tropical upwelling has been detected throughout the entire record by calcareous
348	nannofossil assemblages [54], plate reconstructions indicate that Site 925 tectonically
349	moved from the Southern to the Northern Hemisphere and was positioned on the equator
350	around 30 Ma (Figure 1). This transit would have altered the expression of local
351	sea-surface CO ₂ , particularly at the equator where the convergence of trade winds drives
352	upwelling of CO ₂ -rich deep waters [73]. A distinct spike in ε_p values and reconstructed
353	pCO_2 is evident in the middle Oligocene (~29.5 Ma, Figure 2D), representing about
354	10-30% increase of CO_2 from the background level. The magnitude of present-day
355	equatorial upwelling, however, is represented by a seawater CO ₂ enrichment in the
356	western equatorial Atlantic by ~30 ppm — about 9% deviation from
357	atmosphere-seawater equilibrium [58]. This potentially implies that equatorial upwelling
358	only partially contributed to the middle Oligocene pCO_2 spike recorded in Site 925, or
359	that upwelling intensity was higher and/or upper water-column stratification was less
360	intense during the Oligocene.

5.2.2

5.2.2 The late Oligocene to early Miocene

- 15 -

Climatic behavior during the late Oligocene/early Miocene interval is particularly
difficult to explain given existing CO ₂ records. After a period of gradual cooling
following the onset of glaciation on Antarctica near the Eocene/Oligocene climate
transition at ~34 Ma, an ~0.8‰ decrease in benthic δ^{18} O values (ODP 1218, eastern
equatorial Pacific, [74]) suggest a period of substantial warming and/or deglaciation
during the latest Oligocene (~27-23 Ma, Figure 5). However, our corresponding CO_2
records indicate a long-term decrease in atmospheric carbon dioxide through the late
Oligocene (Figure 5). Isotopic evidence for warming and or partial deglaciation at the end
of the Oligocene is not simply an artifact of stacked benthic δ^{18} O records from different
marine sites [74, 75] given that the δ^{18} O record from ODP Site 1218 spans the entire
Oligocene and unambiguously supports the presence of a negative oxygen isotope
excursion during this time [74]. Thus, the cause for this negative δ^{18} O trend remains
unresolved in relation to our new CO ₂ record.
Another apparent decoupling between CO_2 and climate occurs near the
Oligocene-Miocene boundary (~23 Ma), represented by a transient, positive benthic
for a period of substantial glaciation (>1‰) interpreted as a period of substantial glaciation
(known as the Mi-1 event, [76]). Our records suggest invariant CO ₂ concentrations during
this of apparent glaciation/deglaciation, defying our current understanding of the
necessary forcing required to drive Antarctic ice sheet variability.
Assuming ~2°C of cooling in the deep sea [77], ~0.5‰ of the ~1‰ δ^{18} O shift at
Mi-1 must have been driven by an increase in ice volume. If continental ice on Antarctica
had an average isotopic composition of -40‰, as indicated by isotopic modeling [72],
then more than 22×10^6 km ³ of ice — roughly equivalent to the entire present day East
Antarctic Ice Sheet (EAIS) — must have accumulated within 400 thousand years.
However, CO ₂ levels during the Oligocene appear low enough to have already
maintained a fully glaciated Antarctica according to ice sheet simulations [78]. Moreover,
the recovery phase of Mi-1 is even more enigmatic because models require substantially

389	higher CO_2 levels — at least two-times higher than the formation threshold of the EAIS
390	(~1500 ppm) to cause substantial ice sheet retreat [72, 78]. Coupled climate-ice sheet
391	simulations show that orbital forcing alone cannot cause Antarctic deglaciation once the
392	ice sheet expands over the continent [71], and requires increases in greenhouse gas
393	concentrations to more than 4 times preindustrial levels to cause substantial ice retreat
394	[78]. It is possible that the resolution of our new CO ₂ record is too low to resolve large
395	fluctuations within the body of the Mi-1 event. Still, exiting the glacial period would
396	require substantially higher CO ₂ levels that are not detected in our record. Alternatively,
397	polar climate sensitivity to CO ₂ might have been much higher than simulated in climate
398	models, or our understanding of Antarctic ice physics is incomplete and ice sheet stability,
399	potentially reflected by the 'Oi' and 'Mi' events (e.g. [74]), is far more sensitive and
400	dynamic than indicated in modeling studies. Another possibility is that the assumption
401	that benthic δ^{18} O variability is representative of global temperature/ice volume is flawed.
402	For example, Nd isotope records suggest alternating deepwater sources during the
403	Paleogene [79, 80], with the potential to alter the temperature, salinity, and δ^{18} O value of
404	deep waters. Different deep-water sources during the late Oligocene and the Mi-1 event
405	could have played a role in the magnitude of the observed benthic δ^{18} O fluctuations.
406	Apparent discrepancies between proxy records of ice volume and CO ₂ could also
407	result if alkenone CO ₂ estimates are simply incorrect or biased for some time intervals.
408	Various theoretical and empirical exercises have been performed to assess non-CO ₂
409	factors that impact algal carbon isotope fractionation and uncertainties in alkenone- pCO_2
410	estimations [50, 52]. For example, higher ambient CO ₂ levels during the earlier part of
411	the Cenozoic could have contributed to a reduction in bicarbonate uptake via
412	β -carboxylation, resulting in ϵ_f values greater than 25‰ [21], as well as inhibiting carbon
413	concentrating mechanisms (CCMs). The isotopic impact of CCM up-regulation during
414	low CO ₂ would arguably minimize ϵ_p and reconstructed CO ₂ variability, which is
415	discussed in greater detail in Section 5.3.

- 17 -

5.2.3 The Mid- to Late-Miocene

Very low Miocene pCO_2 concentrations that characterize published alkenone (Figure 3, [19, 20]) and boron-isotope [81] CO₂ records have puzzled the paleoclimate community for nearly a decade. If atmospheric CO_2 was a key parameter forcing cryosphere expansion during the Neogene, major Northern Hemisphere glaciation should have arguably occurred some 20 million years earlier than the accepted age of ~ 2.7 Ma (Figure 3, [72, 82, 83]). Low pCO₂ levels are also difficult to reconcile with the well-documented warmth of the middle and late Miocene, which was characterized by SSTs significantly higher than today [84]. For example, subtropical east Pacific (ODP 1010) and northeast Pacific (ODP 1021) have been found to be at least 12°C warmer at 12 Ma relative to today, and 5°C warmer relative to the early Pliocene [84]. Prior alkenone and boron isotope reconstructions have both indicated that the global warmth of the middle Miocene climate optimum (MMCO, ~17-14 Ma) and the subsequent expansion and stabilization of Antarctic ice sheets (middle Miocene climate transition, MMCT, ~14 Ma) were associated with relatively invariant pCO_2 [20, 81] and slightly higher pCO₂ during ice expansion (Figure 3, [20]). Not surprisingly, climate models applying published alkenone and boron-isotope-based CO_2 records [85, 86] cannot simulate middle Miocene climate signals as determined by proxy records [19, 81]. Intriguingly, our new record implicates a more important role for pCO_2 in the climatic variability of the early to middle Miocene. The partial pressure of carbon dioxide rises to 400 to 500 ppm during the climatic optimum of the middle Miocene followed by an ~100 ppm decline during MMCT (Figure 5), which better agrees with recent stomatal index [6] and boron isotope estimates (Figure 4, [15]). Comparing the Site 925 record to the earlier alkenone- pCO_2 record from DSDP Site 588 [19, 20], we found that the isotopic fractionation ε_{n372} is larger (15% versus 10%) and the SST estimate is higher by 6-8°C, both of which could have contributed to higher Miocene CO₂ levels in the new assessment. Although we cannot rule out the possibility that CO₂ air – sea disequilibrium

443 at Site 925 contributed to higher local CO_2 estimates, three independent methods agree 444 that pCO_2 during the MMCO was higher, and then declined during the MMCT cooling, 445 implying that CO_2 was closely linked to major Miocene climate events. Importantly, 446 Miocene CO_2 levels now appear higher than Pliocene and Pleistocene concentrations, 447 consistent with the appearance of Northern Hemisphere glaciation during the Pliocene 448 (Figures 3, 5).

5.3 Assessing the effect of bicarbonate-CO₂ conversion

The capacity for active carbon transport is common among marine and fresh water algae [48, 49, 51]. This is because RUBISCO, the primary carboxylase, has a relatively low affinity for CO_2 and, for most algal species, is less than half saturated under current CO_2 levels [51]. CCMs increase carbon availability and reduce rates of photorespiration that impact rates of carbon fixation [51].

Whether or not CCMs were an important aspect of ancient alkenone-producers remains speculative. Whereas some organisms, such as diatoms, show highly efficient and active CCMs [48, 87], CCMs in modern E. huxleyi and other coccolithophores appear weakly expressed [53, 88]. Physiological parameters of extinct alkenone-producing species are unknown. Since CCMs are energetically expensive, ancient haptophytes probably lacked operational CCMs under the significantly higher CO_2 levels of the past [89]. However, the presence of CCMs could have become more pronounced during the Neogene due to the considerable decline in atmospheric CO₂ (Figure 3, 4, 5, and 6). If this perspective is valid, quantitative CO₂ reconstructions could be compromised during periods of relatively low pCO_2 levels.

Various theoretical models have been developed to understand the factors that would drive up-regulation of CCMs [47, 50, 90, 91]. One model assumes that active transport occurs when diffusive flux achieves a minimum threshold of intracellular CO_2 necessary for adequate growth. Minimum diffusive flux estimates depend on ambient $[CO_{2(aq)}]$ and constraints imposed by cell size. Assuming spherical geometry, minimum $[CO_{2(aq)}]$ can be

470	defined as [47, 90, 91]:
471	$[CO_2]_{\min} = \frac{F_{in}}{4\pi r D_T (1 + r/r_k)}$ Equation 6
472	where F_{in} is the diffusive influx of $CO_{2(aq)}$, D_T is the diffusion coefficient of CO_2 , r is the
473	"surface area equivalent" spherical cell radius [91], r_k is the reacto-diffusive length (i.e,
474	length of the boundary layer where HCO_3^- has the opportunity to convert to CO_{2aq}), and
475	the term $(1+r/r_k)$ represents the contribution of extracellular, uncatalyzed and spontaneous
476	$HCO_3^CO_{2(aq)}$ conversion to the total supply of CO_2 [47, 90].
477	The term r_k is calculated by
478	$r_k = \sqrt{\frac{D_T}{k'}}$ Equation 7
479	where k' is the rate constant for conversion of HCO ₃ and H ₂ CO ₃ to CO _{2(aq)} . An
480	approximation for the temperature dependence of D_T is given by [92] that
481	$D_{\rm T} = 5.019 \times 10^{-6} e^{-\left(\frac{E_{\rm d}}{RT_{\rm K}}\right)} $ Equation 8
482	with activation energy $E_d = 19510 \text{ J mol}^{-1}$, gas constant R = 8.3143 J K mol ⁻¹ , and T _K is
483	temperature in degrees Kelvin. For the rate constant k' , Gavis and Ferguson (1975)
484	demonstrated that
485	$k' = k_1[OH^-] + k_2$ Equation 9
486	where k_1 and k_2 are the rate constants of formation of CO ₂ from HCO ₃ ⁻ and H ₂ CO ₃ ,
487	respectively, and [OH ⁻], the hydroxyl ion concentration. At 25°C, $k_1 = 8500 \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$,
488	$k_2 = 3 \times 10^{-5} \text{ s}^{-1} [93].$
489	Given the equilibrium constant for seawater $K_w = [H^+][OH^-]$, $[OH^-]$ can be
490	calculated if seawater pH is known. At atmospheric pressure [94]:
491	$\ln K_{w}^{*} = 148.96502 - \frac{13847.26}{T_{K}} - 23.6521 \ln T_{K}$
492	+ $\left[\frac{118.67}{T_K} - 5.977 + 1.0495 \ln T_K\right] S^{1/2} - 0.01615S$ Equation 10
493	Therefore, the portion of fixed CO_2 contributed by the conversion from bicarbonates in
494	the geological past can be calculated if seawater temperature (T_K) , pH, salinity (S) , and
495	the cell size (r) of ancient alkenone-producers are constrained.

- 20 -

496	Ocean pH estimates and SST reconstructions are available for the Eocene –
497	Oligocene climate transition [16], middle Miocene [15], Pliocene [18] and the
498	Pleistocene [13], and ancient cell sizes for assumed alkenone producers (e.g.
499	Reticulofenestra, Dictyococcites and Cyclicargolithus) can be estimated using coccolith
500	size measurements [21, 37, 89, 95]. However, the available coccolith length data and
501	boron-based pH estimates are not derived from the same marine sites. Cell sizes of
502	assumed alkenone-producers show large spatial variability. For example, Pagani et al.
503	(2011) demonstrated that <i>Reticulofenestrid</i> coccoliths from the Southern Ocean sites (e.g.
504	ODP 1090) were two times as large as those in the tropical Atlantic (ODP 925, 929)
505	during the E-O transition. This apparent cell size variability of alkenone-producers
506	hampers the application of available coccolith data to the HCO_3^- - CO_2 conversion
507	evaluation of the Cenozoic. Therefore, given that cell size data for the past 40 million
508	years is not available for Site 925, we assume a constant cell radius of 2.67 μ m, which is
509	the average value estimated from coccolith dimensions for the Cenozoic [21, 37, 89].
510	Boron isotope-derived seawater pH and coeval Mg/Ca-based SST, with the
511	assumption of a constant salinity of 35 and 2.67 μ m cell radius of alkenone-producers,
512	enables an assessment of the impact of bicarbonate-CO ₂ conversion on alkenone- <i>p</i> CO ₂
513	estimates during the Cenozoic. Temporal patterns in the ratio r/rk indicate that the
514	percentage of fixed carbon derived from bicarbonate conversion is generally low, on the
515	order of 1.4-2.3% (Figure 7), with a trend of elevated bicarbonate contribution by the
516	Pleistocene (~40% more relative to the late Eocene; Figure 7). Since we assume constant
517	cell size, this increase is primarily due to an ~ 0.5 pH drop from ~ 7.7 during the latest
518	Eocene [16] to 8.2 today. Alternatively, CCMs could have become increasingly important
519	[50, 96] to counter low CO_2 . However, accurate quantitative correction for the effect of
520	HCO_3^- - CO_2 conversion on alkenone- pCO_2 estimates will require more detailed
521	site-specific data on cell size of the alkenone-producers and pH history of the region.
522	An alternative model to estimate CCM activity (Laws et al. 1997; 2002) considers

- 21 -

523 both diffusion and active uptake of inorganic carbon to describe the non-linear culture 524 results of *P. tricornutum*:

$$\varepsilon_{p} = \varepsilon_{f} + \varepsilon_{t} - \varepsilon_{-t} - \left(\frac{1}{1 + \frac{C_{e}P}{\mu C(1+\beta)}}\right) \left(\frac{\varepsilon_{f} - \varepsilon_{-t}}{\beta + 1}\right)$$
Equation 11

Here, β is a constant equivalent to the ratio of CO₂ loss (leakage by diffusion) to carbon fixation, P is membrane permeability, C is cell carbon content, and ϵ_{-t} is the isotopic fractionation associated with the inorganic carbon diffusion back from the cell, to the surrounding seawater. As detailed in Laws et al. (2002), the value of ϵ_p becomes insensitive to $\mu/[CO_{2(aq)}]$ when:

$$\frac{\mu}{C_{e}} \ge \frac{P}{C(1+\beta)}$$
 Equation 12

Empirical relationships between P and C show its dependence on the cell radius: P/C = 0.285/r. Minimum [CO_{2(aq)}] that would trigger active transport occurs when the term (1+ β) approaches unity, or leakage is zero. Laws et al. (2002) calculate that ε_p for *E. huxleyi* would become a non-linear function of μ /[CO_{2(aq)}] as photoperiod growth rate exceeds 1.1 d⁻¹ for a cell radius of 2.6 µm, comparable to the culture results of *E. huxleyi* [42].

Growth rates in the natural environment for *E. huxleyi* and other alkenone-producing haptophytes are generally low, below 1 d⁻¹, ranging from 0.1 to 1 d⁻¹ [53, 97]. Cell dimensions of alkenone-producing algae since middle Eocene [18, 21, 37, 89] used in conjunction with estimates of pCO_2 provides a means to identify geologic intervals when up-regulation of CCMs was potentially necessary. For example, cell radii for alkenone producers range from ~ 4 to 2.4 µm during the Eocene – Oligocene transition [21], and cell radii were about 50% smaller during the early Miocene [37]. Knowledge of cell radius allows calculation of the ratio P/C [50] and the ratio $\mu/[CO_{2(aq)}]$ can be estimated from alkenone-based CO₂ reconstructions and a range of modern haptophyte growth rates, assuming alkenone-based CO_2 estimates are valid even if CCMs were active. Using pCO_2 data from earlier results [19, 20, 28], Figure 7 shows that for low to moderate growth rates, the operation of CCMs is expected during the Miocene, particularly during the

climatic optimum of the late early Miocene, suggesting that the alkenone- CO_2 estimates may be compromised during this time interval. Obviously, this result is speculative given the necessary assumptions. For example, CO_2 concentrations used in this exercise derive from alkenone measurements and if CCMs were active, then these CO_2 values would appear artificially lower than actual concentrations and further exaggerate the potential influence of CCMs.

Conclusions

An alkenone-based pCO_2 record spanning the past 40 million years is presented for ODP Site 925 – representing the first long-term Cenozoic pCO_2 record constructed from a single site. Facilitated by improved methodology and careful consideration of assumptions, this record provides refined pCO_2 estimates from a site that is characterized by limited long-term variability in oceanographic conditions. This record, therefore, reflects our most up-to-date effort to better constrain the Cenozoic history of atmospheric CO₂. This new record confirms predictions from climate models regarding the role of CO_2 in the cryosphere evolution in both hemispheres at several key time intervals (e.g. Eocene – Oligocene transition, MMCT, Plio-Pleistocene). This record also suggests that Miocene CO₂ levels were higher than earlier estimates, which better reconciles a long-standing data – model discrepancy for the Miocene. However, outstanding issues remain which include the presumed warming or deglaciation in the late Oligocene and the abrupt and transient oxygen isotope excursion at Mi-1, both of which challenge our understanding of CO₂ climate and ice sheet sensitivity.

We also evaluate spontaneous $HCO_3^--CO_{2(aq)}$ conversion, which is one variable that could impact CO₂ estimates from the alkenone-*p*CO₂ method. We conclude that the contribution from $HCO_3^--CO_2$ conversion to the carbon fixed by alkenone-producing algae is minor, although this potential has increased by 40% from late Eocene to the Quaternary. Finally, an exercise to evaluate potential CCM activity in haptophyte algae suggest that low *p*CO₂ levels in the Neogene is more likely to trigger CCM mechanisms.

- 23 -

Manuscript for Philosophical Transactions of the Royal Society A

576 Acknowledgements

577 This study was supported by NSF AGS P2C2 award 1203163 to M.P. and R.D. We

578 thank Dan Lunt for his editorial handling, Rich Pancost and an anonymous reviewer for

579 their thoughtful reviews.

581	Figure Captio	ns
-----	----------------------	----

Figure 1. Global plate reconstruction shows the location of ODP Site 925 at 40 Ma, 20
Ma, and the present, as well as a detail of the northward movement of Site 925 since 40

584 Ma [56]. Continents are shown as tectonic terrains rather than shorelines.

586 Figure 2. Time series of ODP Site 925. (A) $U_{37}^{k\prime}$ and TEX₈₆ based SST reconstruction;

587 (B) Adjusted carbon isotopes from foraminiferal stable isotope measurements to

proximate δ^{13} C of surface water dissolved inorganic carbon. (C) Carbon isotopes of

alkenones; (D) $\varepsilon_{p37:2}$ calculated from (B) and (C); (E) *p*CO₂ calculated from (D), using

590 both $U_{37}^{k\prime}$ and TEX₈₆ based SST estimates, and assuming $[PO_4^{3-}]$ values were 0.20, 0.14

591 (lower limit) and 0.39 µM (upper limit). Refer to Supplementary Material to see details

of constructing (B), (D), (E) and their related uncertainties; One CO₂ estimate at 35.52

593 Ma give value > 2400 ppm, which is off the chart and therefore not shown in the

594 following figures.

Figure 3. A comparison of alkenone-based pCO_2 composite from multiple marine sites as compiled in [28] and ODP Site 925 record since the late Eocene. Antarctic glaciation thresholds (~750 ppm) and Northern Hemisphere glaciation threshold (~280 ppm) deduced from climate models [72] are marked by dashed lines.

Figure 4. Comparison between different proxy-based pCO_2 estimates for the past 40 Ma. Boron isotope, paleosol and stomata data are summarized by [25], with additional data from Foster et al. (2012) [15].

Figure 5. Climate and atmospheric CO_2 history for the past 40 Ma. Benthic $\delta^{18}O$ from [75]. Major warming (red arrows) and cooling (blue arrows) events are labeled. Red bars indicate brief history of Antarctic and Northern Hemisphere ice sheets. Antarctic

608	glaciation thresholds (~750 ppm) and Northern Hemisphere glaciation threshold (~280
609	ppm) deduced from climate models [72] are marked by dashed lines.
610	
611	Figure 6. Comparison between the spontaneous bicarbonate- $CO_{2(aq)}$ conversion (green
612	symbols) and the CCM potential of alkenone producers (orange bands) for the past 45 Ma
613	$HCO_3^ CO_{2(aq)}$ conversion (r/r _k) based on the model of Riebesell et al. (1993) and
614	Wolf-Gladrow et al., (1997) [90, 91], using seawater pH and SST data provided by boron
615	isotope studies [13, 15, 16, 18], and a constant radius of 2.67 μ m for alkenone-producing
616	haptophyte algae. Computation of CCM potential is based on the model of [44, 50],
617	utilizing previously published cell size [21, 37, 89, 95] and existing paleo-CO ₂ estimates
618	[18, 21, 28]. CCM potential ([(μ/C_e)/(/P/C)]100 – 100) represents an arbitrary, qualitative
619	scale of CCM activity.
620	

60

References 621

2			
3 4	621	Refere	ences
5	(00		
6	622		
8	623	1.	Keeling, C.D., The concentration and isotopic abundances of carbon dioxide in the atmosphere.
9	624		<i>Tellus</i> , 1960. 12 : p. 200-203,
10	625	2.	Petit, J.R., et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice
12	626		core, Antarctica. Nature, 1999. 399: p. 429-436, DOI: 10.1038/20859.
13	627	3.	Luthi, D., et al., High-resolution carbon dioxide concentration record 650,000-800,000 years
14	628		before present. Nature, 2008. 453: p. 379-382, DOI: 10.1038/nature06949.
15 16	629	4.	Siegenthaler, U., et al., Stable carbon cycle-climate relationship during the late Pleistocene.
17	630		Science, 2005. 310: p. 1313-1317, DOI: 10.1126/science.1120130.
18	631	5.	van der Burgh, J., H. Visscher, D.L. Dilcher, and W.M. Kurschner, Paleoatmospheric signatures in
19 20	632		Neogene fossil leaves. Science, 1993. 260: p. 1788-1790,
21	633	6.	Kurschner, W.M., Z. Kvacek, and D.L. Dilcher, The impact of Miocene atmospheric carbon
22	634		dioxide fluctuations on climate and evolution of terrestrial ecosystems. Proc. Natl. Acad. Sci.,
23 24	635		2008. 105 : p. 449-453,
25	636	7.	Kurschner, W.M., Leaf stomata as biosensors of paleoatmospheric CO ₂ levels. <i>LPP Contributions</i>
26	637		Series 1996. 5: p. 1-153,
27	638	8.	Royer, D.L., Stomatal density and stomatal index as indicators of paleoatmospheric CO ₂
29	639		concentration. Rev. Palaeobot. Palynology, 2001. 114: p. 1-28, DOI:
30	640		10.1016/s0034-6667(00)00074-9.
31 32	641	9.	Retallack, G.J., Greenhouse crises of the past 300 million years. GSA Bull., 2009. 121: p.
33	642		1441-1455,
34	643	10.	Ekart, D.D., T.E. Cerling, I.P. Montanez, and N.J. Tobor, A 400 million year carbon isotope
35 36	644		record of pedogenic carbonates: implications for paleoatmospheric carbon dioxide. Am. J. Sci.,
37	645		1999. 299 : p. 805-827,
38	646	11.	Retallack, G.J., Refining a pedogenic-carbonate CO ₂ paleobarometer to quantify a middle
39 40	647		Miocene greenhouse spike. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2009. 281: p. 57-65,
41	648	12.	Cerling, T.E., Use of carbon isotopes in paleosols as an indicator of the p(CO ₂) of the
42	649		paleoatmosphere. Global Biogeochem. Cyc., 1992. 6: p. 307-314,
43 44	650	13.	Honisch, B., G.N. Hemming, D. Archer, M. Siddall, and J.F. McManus, Atmospheric carbon
45	651		dioxide concentration across the mid-Pleistocene transition. Science, 2009. 324: p. 1551-1554,
46	652	14.	Bartoli, G., B. Honisch, and R.E. Zeebe, Atmospheric CO ₂ decline during the Pliocene
47 48	653		intensification of Northern Hemisphere glaciation. Paleoceanography, 2011. 26, DOI:
49	654		doi:10.1029/2010PA002055.
50	655	15.	Foster, G.L., C.H. Lear, and J.W.B. Rae, The evolution of pCO ₂ , ice volume and climate during
51 52	656		the middle Miocene. Earth Planet. Sci. Lett., 2012. 341-344: p. 243-254,
53	657	16.	Pearson, P.N., G.L. Foster, and B.S. Wade, Atmospheric carbon dioxide through the
54	658		Eocene-Oligocene climate transition. <i>Nature</i> , 2009. 461 : p. 1110-U204, DOI:
55 56	659		10.1038/nature08447.
57	660	17.	Sanyal, A., N.G. Hemming, G.N. Hanson, and W.S. Broecker, Evidence for a higher pH in the
58			
59			

Manuscript for Philosophical Transactions of the Royal Society A

661		glacial ocean from boron isotopes in foraminifera. Nature, 1995. 373: p. 234-236,
662	18.	Seki, O., G.L. Foster, D.N. Schmidt, A. Mackensen, K. Kawamura, and R.D. Pancost, Alkenone
663		and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett., 2010. 292: p. 201-211,
664	19.	Pagani, M., M.A. Authur, and K.H. Freeman, Miocene evolution of atmospheric carbon dioxide.
665		<i>Paleoceanography</i> , 1999. 14 : p. 273-292,
666	20.	Pagani, M., K.H. Freeman, and M.A. Arthur, Late Miocene atmospheric CO ₂ concentrations and
667	01	the expansion of C-4 grasses. Science, 1999. 285: p. 8/6-8/9,
608	21.	Pagani, M., M. Huber, Z.H. Liu, S. Bonaty, J. Henderiks, W. Sijp, S. Krisnnan, and K. DeConto,
009 670		1 ne role of carbon dioxide during the onset of Antarctic glaciation. <i>Science</i> , 2011. 334 : p.
671	22	1201-1204,
672	22.	determined from Pliceone eachen diavide concentrations. Nat. Consci. 2010. 3: p. 27.20. DOI:
673		10 1038/ngeo724
674	23	Biil PK A LP Houben S Schouten S Bobaty A Shuijs G L Reichart LS S Damste and H
675	23.	Brinkhuis Transient Middle Eccene atmospheric CO, and temperature variations. Science, 2010
676		330 n 819-821
677	24	Palmer M.R. G.I. Brummer M.I. Cooper, H. Elderfield, M.I. Greaves, G.I. Reichart, S.
678	21.	Schouten and I M. Yu. Multi-proxy reconstruction of surface water pCO ₂ in the northern Arabian
679		Sea since 29 ka. <i>Earth Planet. Sci. Lett.</i> 2010. 295 : p. 49-57.
680	25.	Beerling, D.J. and D.L. Rover, Convergent Cenozoic CO ₂ history. <i>Nat. Geosci.</i> , 2011. 4: p.
681		418-420,
682	26.	Jasper, J.P. and J.M. Hayes, A carbon isotope record of CO ₂ levels during the late Quaternary.
683		Nature, 1990. 347 : p. 462-464,
684	27.	Jasper, J.P., J.M. Hayes, A.C. Mix, and F.G. Prahl, Photosynthetic fractionation of ¹³ C and
685		concentrations of dissolved CO_2 in the central equatorial Pacific during the last 255,000 years.
686		Paleoceanography, 1994. 9: p. 781-798,
687	28.	Pagani, M., J.C. Zachos, K.H. Freeman, B. Tipple, and S. Bohaty, Marked decline in atmospheric
688		carbon dioxide concentrations during the Paleogene. Science, 2005. 309: p. 600-603, DOI:
689		10.1126/science.1110063.
690	29.	Conte, M., J.K. Volkman, and G. Eglinton, Lipid biomarkers of the Haptophyta, in The
691		Haptophyte Algae, J.C. Green and B.S.C. Leadbeater, Editors. 1994, Clarendon Press: Oxford. p.
692		351-377.
693	30.	Volkman, J.K., S.M. Barrett, S.I. Blackburn, and E.L. Sikes, Alkenones in Gephyrocapsa
694		oceanica: Implications for studies of paleoclimate. Geochim. Cosmochim. Acta, 1995. 59: p.
695		513-520,
696	31.	McIntyre, A., Gephyrocapsa protohyxleyi sp. n. as possible phyletic link and index fossil for the
697		Pleistocene. Deep Sea Res. I, 1970. 17: p. 187-190,
698	32.	Hay, W.W., Calcareous nannofossils, in Oceanic Micropaleontology, A.T.S. Ramsey, Editor 1977,
699		Academic Press: London, UK.
700	33.	Young, J., Size variation of Neogene Reticulofenestra coccoliths from Indian Ocean DSDP cores.
701		<i>J. Micropalaeontol.</i> , 1990. 9 : p. 71-85,

1			Manuscript for Philosophical Transactions of the Royal Society A
2 3	702	34	Marlowe IT SC Brassell G Eglinton and IC Green Long-chain alkenones and alkyl
4	703	51.	alkenoates and the fossil coccolith record of marine sediments. <i>Chem. Geol.</i> 1990, 88 : p. 349-375
6	704	35	Young LR Neogene Calcareous Nannofossil Riostratigraphy PR Bown Editor 1998 Springer
7 8	705	55.	Netherlands. p. 225-265.
9	706	36.	Plancq, J., V. Grossi, J. Henderiks, L. Simon, and E. Mattioli, Alkenone producers during late
10	707		Oligocene-early Miocene revisited. Paleoceanography, 2012. 27, DOI:
11	708		doi:10.1029/2011PA002164.
12	709	37.	Henderiks, J. and M. Pagani, Refining ancient carbon dioxide estimates: Significance of
14	710		coccolithophore cell size for alkenone-based pCO ₂ records. <i>Paleoceanography</i> , 2007. 22 , DOI:
15	711		doi:10.1029/2006PA001399.
16 17	712	38.	Popp, B.N., F. Kenig, S.G. Wakeham, E.A. Laws, and R.R. Bidigare, Does growth rate affect
18	713		ketone unsaturation and intracellular carbon isotopic variability in <i>Emiliania hystevi</i> ?
19	714		Paleoceanography 1998 13 p 35-41
20	715	39	Farouhar G.D. I.R. Ehleringer and K.T. Hubick Carbon isotope discrimination and
22	716	07.	nhotosynthesis Annu Rev Plant Physiol Plant Mol Biol 1989 40: n 503-537
23	717	40	Facultar G.D. M.H. O'Leary and I.A. Berry. On the relationship between carbon isotone
24	718	40.	discrimination and the intercellular carbon dioxide concentration in leaves Aust I Plant Physiol
25	710		1082 0 p 121 137
27	720	41	Coorieles P. I.D. Montova and P. Fry Physiology of isotone fractionation in aloge and
28	720	41.	coefficke, K., J.F. Montoya, and B. Fry, <i>Physiology of isotope fractionation in algue and</i>
29 30	721		Solontifio: Combridge
31	722	40	Scientific: Cambridge.
32	723	42.	Popp, B.N., E.A. Laws, K.R. Bidigare, J.E. Dore, K.L. Hanson, and S.G. wakenam, Effect of
33	724		Phytoplankton Cell Geometry on Carbon Isotopic Fractionation. Geochim. Cosmochim. Acta,
35	725	12	1998. 62: p. 69-77, DOI: doi:10.1016/s0016-7037(97)00333-5.
36	/26	43.	Laws, E.A., B.N. Popp, R.R. Bidigare, M.C. Kennicutt, and S.A. Macko, Dependence of
37	727		phytoplankton carbon isotopic composition on growth rate and $[CO_2]aq$: Theoretical
39	728		considerations and experimental results. Geochim. Cosmochim. Acta, 1995. 59: p. 1131-1138,
40	729		DOI: 10.1016/0016-7037(95)00030-4.
41	730	44.	Laws, E.A., R.R. Bidigare, and B.N. Popp, Effect of growth rate and CO ₂ concentration on carbon
42 43	731		isotopic fractionation by the marine diatom <i>Phaeodactylum tricornutum</i> . <i>Limnol. Oceanogr.</i> , 1997.
44	732		42 : p. 1552-1560,
45	733	45.	Riebesell, U., A.T. Revill, D.G. Holdsworth, and J.K. Volkman, The effects of varying CO ₂
46 47	734		concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi.
48	735		Geochim. Cosmochim. Acta, 2000. 64: p. 4179-4192, DOI: 10.1016/s0016-7037(00)00474-9.
49	736	46.	Rost, B., I. Zondervan, and U. Riebesell, Light-dependent carbon isotope fractionation in the
50 51	737		coccolithophorid Emiliania huxleyi. Limnol. Oceanogr., 2002. 47: p. 120-128,
52	738	47.	Burkhardt, S., U. Riebesell, and I. Zondervan, Effects of growth rate, CO2 concentration, and cell
53	739		size on the stable carbon isotope fractionation in marine phytoplankton. Geochim. Cosmochim.
54 55	740		Acta, 1999. 63: p. 3729-3741, DOI: 10.1016/s0016-7037(99)00217-3.
55 56	741	48.	Raven, J.A. and A.M. Johnston, Mechanisms of inorganic-carbon acquisition in marine
57	742		phytoplankton and their implications for the use of other resources. Limnol. Oceanogr., 1991. 36:
58 59			

2			
3	743		p. 1701-1714,
4 5	744	49.	Raven, J.A., A.M. Johnston, and D.H. Turpin, Influence of changes in CO ₂ concentration and
6	745		temperature on marine phytoplankton 13C/12C ratios: an analysis of possible mechanisms. <i>Global</i>
7	746		<i>Planet. Change.</i> 1993. 8 : p. 1-12. DOI: 10.1016/0921-8181(93)90058-v.
8 9	747	50.	Laws, E.A., B.N. Popp, N. Cassar, and J. Tanimoto, ¹³ C discrimination patterns in oceanic
10	748		phytoplankton: likely influence of CO ₂ concentrating mechanisms, and implications for
11	749		palaeoreconstructions Funct Plant Biol 2002 29: p 323-333
12	750	51	Giordano M I Beardall and I A Raven CO ₂ concentrating mechanisms in algae: Mechanisms
14	751	51.	environmental modulation and evolution <i>Annu Rev Plant Rial</i> 2005 56 : n 99-131
15	752	52	Ray G H II Richesell and D Wolf-Gladrow A model of photosynthetic C-13 fractionation by
16	752	52.	marine phytoplankton based on diffusive molecular CO2 untake Mar. Ecol. Prog. Sar. 1996 133:
17	753		n 275 285 DOI: 10.2254/mone122275
19	754	52	p. 273-263, DOI: 10.3334/Incps133273.
20	755	55.	offects in some hostenbute classe. Clobal Biogeochem. Cus. 1007, 11: p. 270, 202, DOL:
21	750		dai:10.1020/04CD02020
23	759	51	dol. 10. 1029/9000003939.
24	750	54.	Shipboard Scientific Party, <i>Sile 925</i> , in <i>Proceedings of the Ocean Dritting Program</i> , Initial
25 26	759		Reports, W.B. Curry, N.J. Snackleton, and C. Richter, Editors. 1995, Ocean Drilling Program:
27	760		College Station, TX.
28	/61	55.	Conkright, M.E., R.A. Locarnini, H.E. Garcia, T.D. O'Brien, T.P. Boyer, C. Stephens, and J.I.
29 30	/62		Antonov, World Ocean Atlas 2001: Objective analyses, data statistics, and figures, 2002, National
31	763		Oceanographic Data Center: Silver Springs, MD.
32	764	56.	Hay, W.W., et al., An alternative global Cretaceous paleogeography, in The evolution of
33	765		Cretaceous ocean/climate systems, E. Barrera and C. Johnson, Editors. 1999, Geological Society
34 35	766		of America: Boulder, CO. p. 1-48.
36	767	57.	Nilsen, E.B., L.D. Anderson, and M.L. Delaney, Paleoproductivity, nutrient burial, climate change
37	768		and the carbon cycle in the western equatorial Atlantic across the Eocene/Oligocene doundary.
38 39	769		<i>Paleoceanography</i> , 2003. 18 , DOI: doi:10.1029/2002PA000804.
40	770	58.	Takahashi, T., et al., Climatological mean and decadal change in surface ocean pCO2, and net
41	771		sea-air CO2 flux over the global oceans. Deap-Sea Res. II, 2009. 56: p. 554-577, DOI:
42 43	772		10.1016/j.dsr2.2008.12.009.
44	773	59.	Prahl, F.G. and S.G. Wakeham, Calibration of unsaturation patterns in long-chain ketone
45	774		compositions for palaeotemperature assessment. Nature, 1987. 330: p. 367-369,
46 47	775	60.	Brassell, S.C., G. Eglinton, I.T. Marlowe, U. Pflaumann, and M. Sarnthein, Molecular stratigraphy:
48	776		a new tool for climatic assessment. Nature, 1986. 320: p. 129-133,
49	777	61.	Hopmans, E.C., S. Schouten, R.D. Pancost, M.T.J. van der Meer, and J.S. Sinnighe Damste,
50	778		Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance
51 52	779		liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid
53	780		Commun. Mass Spectrom., 2000. 14: p. 585-589,
54	781	62.	Schouten, S., E.C. Hopmans, E. Schefuss, and J.S.S. Damste, Distributional variations in marine
วว 56	782		crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?
57	783		Earth Planet. Sci. Lett., 2002. 204: p. 265-274,
58			
วษ 60			- 30 -

2			
3 ⊿	784	63.	Pearson, P.N. and W.P. Chaisson, Late Paleocene to middle Miocene planktonic foraminifer
5	785		biostratigraphy of the Ceara Rise, in Proceedings of the Ocean Drilling Program, Scienfitic
6	786		Results, N.J. Shackleton, W.B. Curry, R.A. Richards, and T.J. Bralower, Editors. 1997, Ocean
7 0	787		Drilling Program: College Station, TX.
o 9	788	64.	Chaisson, W.P. and P.N. Pearson, Planktonic foraminifer biostratigraphy at Site 925: Middle
10	789		Miocene-Pleistocene, in Proceedings of the Ocean Drilling Program, Scientific Results, N.J.
11	790		Shackleton, W.B. Curry, C. Richter, and T.J. Bralower, Editors, 1997, Ocean Drilling Program:
12 13	791		College Station, TX.
14	792	65.	Cande, S.C. and D.V. Kent. Revised calibration of the geomagnetic polarity timescale for the late
15	793		Cretaceous and Cenozoic. J. Geophys. Res., 1995, 100: p. 6093-6095.
16 17	794	66.	Berggren, W.A., D.V. Kent, C.C. Swisher, and MP. Aubry. A revised Cenozoic geochronology
18	795	00.	and chronostratigraphy in Geochronology time scales and global stratigraphic correlation WA
19	796		Berggren D V Kent M -P Aubry and I Hardenbol Editors 1995 SEPM Society for
20	797		Sedimentary Geology: Tulsa OK n 129-212
22	798	67	Conte M M -A Sicre and C Rublemann Global temperature calibration of the alkenone
23	799	07.	unsaturation index $(U_{\alpha}^{K'})$ in surface waters and comparison with surface sediments. <i>Geochem</i>
24 25	800		Geophys Geosyst 2006 7 DOI: doi:10.1029/2005GC001054
26	801	68	Liu Z. M. Pagani, D. Zinniker, R. DeConto, M. Huber, H. Brinkhuis, S.R. Shah, R.M. Leckie
27	802	00.	and A Pearson Global Cooling During the Eocene Oligocene Climate Transition Science 2000
28	802		373 : n 1187 1100 DOI: 10.1126/science.1166368
29 30	804	60	Honmons E.C. I.W.H. Waijers E. Schafuß I. Harfort I.S. Sinningha Damstá and S. Schouten
31	804	09.	A neuel provu for terrestrial organia matter in addiments based on branched and isopranoid
32	805		A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid
33 34	800	70	Spore III. K.M. Mielko F.M. Kolyo D.W. Loo and D.K. Bok Multicroscies approach to
35	807	70.	spero, H.J., K.M. Mielke, E.M. Kalve, D.W. Lea, and D.K. Pak, Multispecies approach to
36	800		Balancementer 2002 19 DOL dei 10 1020/2002DA000814
37 38	809 810	71	Pateoceanography, 2005. 18, DOI: doi:10.1029/2002PA000814.
39	810 911	/1.	streamharia CO. Natura 2002 121 r. 245 240
40	811 912	70	atmospheric CO_2 . <i>Nature</i> , 2003. 421 : p. 245-249,
41 42	812	12.	Deconto, K.M., D. Pollard, P.A. Wilson, H. Palike, C.H. Lear, and M. Pagani, Infesholds for
43	014	70	Cenozoic bipolar giaciation. <i>Nature</i> , 2008. 455 : p. 652-052, DOI: 10.1038 /nature0/337.
44	814	/3.	Knauss, J.A., Introduction to Physical Oceanography. 2nd ed 2006, Long Grove, IL: Waveland
45 46	815	74	Press. 309.
47	816	/4.	Palike, H., R.D. Norris, J.O. Herrie, P.A. Wilson, H.K. Coxall, C.H. Lear, N.J. Shackleton, A.
48	817		Iripati, and B.S. Wade, The heartbeat of the Oligocene climate system. <i>Science</i> , 2006. 314 : p.
49 50	818		1894-1898,
51	819	75.	Zachos, J.C., G.R. Dickens, and R.E. Zeebe, An early Cenozoic perspective on greenhouse
52	820	-	warming and carbon-cycle dynamics. <i>Nature</i> , 2008. 451 : p. 279-283,
53 54	821	76.	Miller, K.G., J.D. Wright, and R.G. Fairbanks, Unlocking the ice house: Oligocene to Miocene
55	822		oxygen isotopes eustasy and margin erosion. J. Geophys. Res., 1991. 96: p. 6829-6848,
56	823	17.	Lear, C.H., Y. Rosenthal, H.K. Coxall, and P.A. Wilson, Late Eocene to early Miocene ice sheet
57 58	824		dynamics and the global carbon cycle. <i>Paleoceanography</i> , 2004. 19, DOI:
59			
60			- 31 -

2			
3	825		10.1029/2004PA001039.
4 5	826	78.	Pollard, D. and R.M. DeConto, Hysteresis in Cenozoic Antarctic ice-sheet variations. Global
6	827		<i>Planet. Change</i> , 2005. 45 : p. 9-21,
7	828	79.	Hague, A.M., D.J. Thomas, M. Huber, R. Korty, S.C. Woodard, and L.B. Jones, Convection of
8 9	829		North Pacific deep water during the early Cenozoic. <i>Geology</i> , 2012, 40 ; p. 527-530.
10	830	80.	Thomas, D.J., M. Lyle, T.C. Moore Jr., and D.K. Rea. Paleogene deepwater mass composition of
11	831		the tropical Pacific and implications for thermohaline circulation in a greenhouse world <i>Geochem</i>
12 13	832		Geophys Geosyst 2008 9 DOI: doi:10.1029/2007GC001748
14	833	81	Pearson P N and M R Palmer. Atmospheric carbon dioxide concentrations over the past 60
15	834	011	million years <i>Nature</i> 2000 406 : p 695-699
16 17	835	82	Lunt DI GI Foster AM Havwood and EI Stone Late Pliocene Greenland glaciation
18	836	02.	controlled by a decline in atmospheric CO ₂ levels. <i>Nature</i> 2008 454 : p. 1102-U41 DOI:
19	837		10 1038/nature07223
20	838	83	Ruddiman W.F. A naleoclimatic enigma? Science 2010 328 : n. 838-839
22	839	84	LaRiviere LP A C Ravelo A Crimmins PS Dekens H L Ford M Lyle and M W Wara
23	840	04.	Late Miccone decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Natura
24	840		2012 48 6 m 07 100
25 26	841 842	05	2012. 400. p. 97-100, You Y. M. Huber, P.D. Muller, C.I. Poulson and J. Pikha, Simulation of the Middle Miccone
27	042 042	83.	Climate Ortiguese Carefus Page Lett 2000, 26 DOL doi:10.1020/2008CL.02(571
28	843	96	Unmate Optimum. <i>Geophys. Res. Lett.</i> , 2009. 36 , DOI: doi:10.1029/2008GL0365/1.
29 30	844	86.	Holbourn, A., W. Kunnt, M. Schulz, and H. Erlenkeuser, Impacts of orbital forcing and
31	845	~-	atmospheric carbon dioxide on Miocene ice-sheet expansion. <i>Nature</i> , 2005. 438 : p. 483-487,
32	846	87.	Badger, M.R., T.J. Andrews, S.M. Whitney, M. Ludwig, D.C. Yellowlees, W. Leggat, and G.D.
33 24	847		Price, The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based
34 35	848		CO ₂ -concentrating mechanisms in algae. Canad. J. Bot., 1998. 76: p. 1052-1071,
36	849	88.	Rickaby, R.E.M., J. Henderiks, and J.N. Young, Perturbing phytoplankton: response and isotopic
37	850		fractionation with changing carbonate chemistry in two coccolithophore species. <i>Clim. Past</i> , 2010.
38 30	851		6 : p. 771-785,
40	852	89.	Henderiks, J. and M. Pagani, Coccolithophore cell size and the Paleogene decline in atmospheric
41	853		CO ₂ . Earth Planet. Sci. Lett., 2008. 269 : p. 575-583,
42 43	854	90.	Riebesell, U., D.A. Wolf-Gladrow, and V. Smetacek, Carbon dioxide limitation of marine
43	855		phytoplankton growth rates. Nature, 1993. 361: p. 249-251,
45	856	91.	Wolf-Gladrow, D. and U. Riebesell, Diffusion and reactions in the vicinity of plankton: A refined
46	857		model for inorganic carbon transport. Mar. Chem., 1997. 59: p. 17-34,
47 48	858	92.	Jahne, B., G. Heinz, and W. Dietrich, Measurement of the diffusion coefficents of sparingly
49	859		soluble gases in water J. Geophys. Res., 1987. 92: p. 10767-10776,
50	860	93.	Gavis, J. and J.F. Ferguson, Kinetics of carbon dioxide uptake by phytoplankton at high pH.
51 52	861		<i>Limnol. Oceanogr.</i> , 1975. 20 : p. 211-221,
53	862	94.	Dickson, A.G. and C. Goyet, Handbook of method for the analysis of the various parameters of
54	863		the carbon dioxide system in sea water, 1994, Department of Energy: ORNL-CDIAC-74.
55 56	864	95.	Kameo, K.T. and T.J. Bralower, Size variation of reticulofenestra coccoliths during the Neogene,
57	865		in Proceedings of the Ocean Drilling Program - Scientific Results, R.M. Leckie and J. Sigurdsson,
58			
59			

		Manuscript for Philosophical Transactions of the Royal Society A
866	0.6	Editors. 2000, Ocean Drilling Program: College Station, TX. p. 3-17.
867	96.	Pagani, M., Biomarker-based inferences of past climate: The alkenone pCO_2 proxy, in Treatise on
868		Geochemistry, H.D. Holland and K.K. Turekian, Editors. 2013, Elsevier: Amsterdam, The
869	07	Netherlands, in press.
8/0	97.	Popp, B.N., K.K. Bidigare, B. Deschenes, E.A. Laws, F.G. Prani, J. Tanimoto, and K.J.
8/1 872		Wallsgrove, A new method for estimating growth rates of alkeone-producing haptophytes. <i>Limnol.</i>
872 873		<i>Oceanogr.: Metn.</i> , 2006. 4 ,
075		

Global plate reconstruction shows the location of ODP Site 925 at 40 Ma, 20 Ma, and the present, as well as a detail of the northward movement of Site 925 since 40 Ma [56]. Continents are shown as tectonic terrains rather than shorelines.

112x51mm (300 x 300 DPI)

Time series of ODP Site 925. (A) $U^{k'_{37}}$ and TEX₈₆ based SST reconstruction; (B) Adjusted carbon isotopes from foraminiferal stable isotope measurements to proximate δ^{13} C of surface water dissolved inorganic carbon. (C) Carbon isotopes of alkenones; (D) $\epsilon_{p37:2}$ calculated from (B) and (C); (E) *p*CO₂ calculated from (D), using both $U^{k'}_{37}$ and TEX₈₆ based SST estimates, and assuming [PO₄³⁻] values were 0.20, 0.14 (lower limit) and 0.39 µM (upper limit). Refer to Supplementary Material to see details of constructing (B), (D), (E) and their related uncertainties; One CO₂ estimate at 35.52 Ma give value > 2400 ppm, which is off the chart and therefore not shown in the following figures. 235x284mm (300 x 300 DPI)

A comparison of alkenone-based *p*CO₂ composite from multiple marine sites as compiled in [28] and ODP Site 925 record since the late Eocene. Antarctic glaciation thresholds (~750 ppm) and Northern Hemisphere glaciation threshold (~280 ppm) deduced from climate models [72] are marked by dashed lines. 172x118mm (300 x 300 DPI)

Comparison between different proxy-based *p*CO₂ estimates for the past 40 Ma. Boron isotope, paleosol and stomata data are summarized by [25], with additional data from Foster et al. (2012) [15]. 170x121mm (300 x 300 DPI)

Climate and atmospheric CO₂ history for the past 40 Ma. Benthic δ^{18} O from [75]. Major warming (red arrows) and cooling (blue arrows) events are labeled. Red bars indicate brief history of Antarctic and Northern Hemisphere ice sheets. Antarctic glaciation thresholds (~750 ppm) and Northern Hemisphere glaciation threshold (~280 ppm) deduced from climate models [72] are marked by dashed lines. 190x139mm (300 x 300 DPI)

Comparison between the spontaneous bicarbonate- $CO_{2(aq)}$ conversion (green symbols) and the CCM potential of alkenone producers (orange bands) for the past 45 Ma. $HCO_3^--CO_{2(aq)}$ conversion (r/r_k) based on the model of Riebesell et al. (1993) and Wolf-Gladrow et al., (1997) [90, 91], using seawater pH and SST data provided by boron isotope studies [13, 15, 16, 18], and a constant radius of 2.67 µm for alkenone-producing haptophyte algae. Computation of CCM potential is based on the model of [44, 50], utilizing previously published cell size [21, 37, 89, 95] and existing paleo-CO2 estimates [18, 21, 28]. CCM potential $([(\mu/C_e)/(/P/C)]100 - 100)$ represents an arbitrary, qualitative scale of CCM activity. 165x121mm (300 x 300 DPI)